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Abstract
As long-lived predators that integrate exposures across multiple trophic levels, cetaceans

are recognized as sentinels for the health of marine ecosystems. Their utility as sentinels

requires the establishment of baseline health parameters. Because cetaceans are pro-

tected, measurements obtained with minimal disruption to free ranging animals are highly

desirable. In this study we investigated the utility of skin gene expression profiling to monitor

health and contaminant exposure in common bottlenose dolphins (Tursiops truncatus).
Remote integument biopsies were collected in the northern Gulf of Mexico prior to the Deep-
water Horizon oil spill (May 2010) and during summer and winter for two years following oil

contamination (2010-2011). A bottlenose dolphin microarray was used to characterize the

skin transcriptomes of 94 individuals from three populations: Barataria Bay, Louisiana,

Chandeleur Sound, Louisiana, and Mississippi Sound, Mississippi/Alabama. Skin transcrip-

tomes did not differ significantly between populations. In contrast, season had a profound

effect on gene expression, with nearly one-third of all genes on the array differing in expres-

sion between winter and the warmer seasons (moderated T-test; p<0.01, fold-change�1.5).

Persistent organic pollutants (POPs) in blubber changed concurrently, reaching >two-fold

higher concentrations in summer compared to winter, due to a seasonal decrease in blub-

ber thickness and loss of stored lipid. However, global gene expression did not correlate

strongly with seasonally changing contaminant concentrations, most likely because the

refractory, lipid-stored metabolites are not substrates for phase I or II xenobiotic detoxifica-

tion pathways. Rather, processes related to cell proliferation, motility, and differentiation

dominated the differences in expression in winter and the warmer seasons. More subtle dif-

ferences were seen between spring and summer (1.5% of genes differentially expressed).
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However, two presumed oil-exposed animals from spring presented gene expression pro-

files more similar to the summer animals (presumed exposed) than to other spring animals.

Seasonal effects have not previously been considered in studies assessing gene expres-

sion in cetaceans, but clearly must be taken into account when applying transcriptomic

analyses to investigate their contaminant exposure or health status.

Introduction
Common bottlenose dolphins (Tursiops truncatus) are long-lived, top predators in coastal
waters where they are routinely exposed to ecosystem perturbations, including anthropogenic
contaminants and natural toxins, through both direct exposure and food web magnification.
They have thus been identified as sentinels for the health of coastal marine ecosystems, and
standard methods for temporarily capturing dolphins to assess their health and contaminant
exposure have been developed and widely applied [1–4]. The utility of common bottlenose dol-
phins (hereafter referred to as bottlenose dolphins) as sentinels has been demonstrated through
capture-release health assessments that established previously unknown transfer of PCBs
through a coastal food web, culminating in dolphin health endpoints including hypothyroid-
ism, anemia, and immunosuppression [4]. Similarly, dolphin health assessments following the
explosion of the Deepwater Horizon drilling platform in the Gulf of Mexico and subsequent oil
spill revealed an increased prevalence of lung disease and adrenal insufficiency, consistent with
exposure to petroleum hydrocarbons [5]. However, the significant cost, logistical complexity,
and danger of conducting capture-release studies makes the development of health indicators
that can be collected from free ranging animals highly desirable, both to augment data from
capture-release studies, and to obtain data from times, locations, or species not amenable to
capture-release protocols.

Remote integument biopsies have been used extensively to study blubber contaminant levels
in cetaceans, including bottlenose dolphins [6], since blubber is the main compartment for
lipid storage. The expression level of the xenobiotic detoxification enzyme, cytochrome P450
1A1 (Cyp1A1) protein in integument biopsies has been shown to correlate with organic con-
taminant exposure in bottlenose dolphins [7,8] and sperm whales (Physeter macrocephalus)
[9], and has been proposed as a biomarker for contaminant exposure. Additionally, qPCR mea-
surement of transcript abundance of selected nuclear receptors in blubber and skin involved in
xenobiotic detoxification and immune function shows correlation to persistent organic con-
taminant levels in harbor seals (Phoca vitulina) [10] and killer whales (Orcinus orca) [11].
Thus the transcript abundance of this suite of genes has been proposed as a suitable suite of
biomarkers of contaminant exposure in cetaceans.

Since genes function in networks of coordinated pathways, the measurement of global gene
expression has the potential to more precisely define the health and physiological status of ceta-
ceans from integument biopsies. Microarray analysis of blood in bottlenose dolphins demon-
strated global gene expression patterns that differed between populations from different
estuaries in the southeast US and Gulf of Mexico [12]. Yet, blood transcriptomes were predic-
tive of PCB contaminant concentrations in blubber, independent of sampling location [13].
Transcriptome studies in human skin are widely used to understand disease processes and
immune functions related to wound healing and pharmaceutical effects [14,15]. In the current
study, we therefore investigate the utility of skin gene expression profiling to monitor the phys-
iology, health, and contaminant exposure in free ranging bottlenose dolphins.
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The skin is a complex organ that provides many functions that may be informative of the
health status of an organism. In mammals, the primary role of skin is to provide a physical bar-
rier against the environment. The skin of cetaceans differs from that of terrestrial mammals in
that it lacks hair follicles or sweat glands. Dolphin epidermis is 1–2 mm thick, 20 times thicker
than that of terrestrial mammals [16]. Both a high rate of desquamation and a high rate of
mitosis occur as a consequence of constant exposure to water friction [17]. The external-most
stratum externum (stratum corneum) is not fully cornified as in terrestrial mammals, but rather
is parakeratinized, consisting of flattened cells that retain their nuclei and organelles, as well as
extensive intracellular keratin fibers and intracellular lipid droplets [18]. Rather than keratino-
cytes, which make up the majority of cells in terrestrial mammal epidermis, the dominant cell
type in cetacean epidermis is the lipokeratinocyte. Lipokeratinocytes produce both keratin and
lipid droplets, and contribute to the mechanical strength, buoyancy, and insulation of cetacean
skin [19]. Lipokeratinocytes also secrete lamellar bodies, intercellular lipid bodies containing
glycoconjugates that may aid in cell adhesion in the stratum externum, as well as streamlining
of cetacean skin.

In addition to its role as a physical barrier, the skin is also an immune organ that contributes
to both the innate and adaptive immune systems. In humans, keratinocytes produce a number
of cytokines, including IL1a, IL-2, IL-6, TGFb1, TNF-a, and INF-g, as well as many of the com-
ponents of the complement system [20]. Dolphin lipokeratinocytes are less well-studied, but
produce β-defensin-2 and -3, which are induced by pro-inflammatory cytokines and may serve
as a non-specific defense against bacteria, fungi, and algae [21]. It is currently unknown what
other cytokines or complement components may be produced by lipokeratinocytes. Cells in
the stratum spinosum produce antimicrobial compounds including lysozyme, which becomes
more concentrated and found in intercellular spaces once these cells migrate into the stratum
corneum [21]. In addition, major histocompatibility (MHC) II antigen-positive, Langerhans-
like lymphocytes concentrated at the dermal-epidermal interface indicate the presence of the
adaptive immune system in dolphin skin [22]. Langerhans cells, once activated, can migrate to
the lymph nodes and present phagocytized antigens to activate the adaptive immune system.
An extensive network of dermal papillae carries lymph and blood vessels, as well as nerve bun-
dles deep into the epidermis, providing access to the circulating immune system and responses
to the central nervous system. Skin is also considered a steroidogenic organ because it locally
synthesizes and metabolizes various steroid hormones and expresses their receptors [23], and
these may play a role in epidermal growth and differentiation.

Finally, the skin expresses xenobiotic pathways that serve to detoxify chemicals that pass
through the stratum corneum, including the aryl hydrocarbon receptor (AhR) and its target,
Cyp1A1. Cyp1A1 protein expression measured by immunohistochemistry is found primarily
in endothelial cells of the arterioles and capillaries of the middle and deep blubber layers in dol-
phins [8]. However, Cyp1A1 mRNA is also expressed in the epithelium as assessed by qPCR (J.
Stegeman, pers. comm.). In the killer whale both skin and blubber express AhR, as well as
other xenobiotic-responsive genes including the thyroid receptor (TR), estrogen receptor (ER),
interleukin 10 (IL10), and metallothionein (MT1), and their mRNA expression levels correlate
with PCB levels [11].

The current study examines the skin transcriptomes from bottlenose dolphins in the north-
ern Gulf of Mexico prior to and following exposure to crude oil resulting from the explosion of
the Deepwater Horizon (DWH) drilling platform on April 20, 2010. An estimated 210 million
gallons of oil were released into the northern Gulf of Mexico, resulting in oiling of coastal eco-
systems from western Louisiana to the Florida panhandle. During the ensuing months, dol-
phins resident to coastal bays in the northern Gulf were observed swimming through surface
oil [5]. In addition to exposure through dermal contact, dolphins were likely exposed through
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inhalation of volatile compounds at the air-water interface, ingestion of contaminated prey,
and incidental ingestion from water or sediments while feeding. The current study utilizes a
bottlenose dolphin-specific microarray to examine the skin gene expression in dolphins from
three bays and sounds in the northern Gulf that received significant oiling: Barataria Bay, Loui-
siana, Chandeleur Sound, Louisiana, and Mississippi Sound, Mississippi, in 2010, before and
after oil reached these areas, and over the subsequent year.

Methods

Samples
Remote biopsy samples were collected from free ranging bottlenose dolphins in three locations
in the northern Gulf of Mexico, including Barataria Bay and Mississippi Sound, in May 2010,
before the oil was observed on the coast, and Chandeleur Sound in late May after initial oiling.
Dolphins in all three locations were sampled again in August-September 2010 after oil was
present, 5–6 months later in December 2010 –February 2011, and finally the following year in
August 2011 and December 2011 –February 2012 (Fig 1 and Table 1). A detailed list of individ-
uals included in this study and their locations can be found in S1 Table. All animals sampled
were subadults or adults (>10 years) as only large animals were targeted. None of the samples
included in the study were repeat samples from the same individuals.

Remote biopsy samples were collected under the authority of Marine Mammal Protection
Act Permit No. 779–1633, issued to the National Marine Fisheries Service (NMFS) Southeast
Fisheries Science Center by the NMFS Office of Protected Species, for marine mammal
research in the Gulf of Mexico, western North Atlantic and Caribbean Sea, including biopsy
sampling. Institutional Animal Care and Use Committee (IACUC) approval was not required
for Permit No. 779–1633. However, these biopsy sampling protocols used were approved by
the NMFS Atlantic IACUC for a subsequent SEFSC permit (No. 14450). A study of the behav-
ioral response of bottlenose dolphins to biopsy sampling using this protocol [24] demonstrated
no response to minimal short-lived startle responses in 89.8% of bottlenose dolphins (accelera-
tion or immediate dive), with only 1.7% responding strongly (breaches, tail slapping). Biopsy
darts were projected using either a custom-modified 0.22-cal rifle or a commercially available
Barnett Panzer V crossbow as described in [25]. Darts had an attached a solid foam float
(allowing the dart to float and be retrieved after firing) and were usually recovered from the
water in 60 seconds or less.

Biopsy samples were collected from the dorsal flanks of targeted dolphins typically from a
‘window’ below the dorsal fin stretching approximately 50 cm long by 20 cm high in order to
minimize potential regional variation in skin gene expression. To our knowledge, no studies of
variation in gene expression according to body location have been carried out. However, previ-
ous studies have shown variation in blubber fatty acid composition and contaminant concen-
trations according to sampling location on the animal, but found consistency within the
dorsolateral region [26, 27]. Biopsies consisted of a cylindrical-shaped core of skin and blubber
measuring approximately 10 mm by 15–20 mm and typically weighing between 0.5 to 1.0 g;
samples were consistently judged to be full depth—extending from the epidermis to the blub-
bler/muscle interface. Following dart retrieval the sample was removed from the sampling tip
with sterile forceps and scalpel. A subsample consisting of one quarter of the skin and blubber
was taken for transcriptomics and placed in a 2.5 mL cryovial and snap frozen, then stored in a
liquid N2 vapor shipper until transfer to the laboratory. In the laboratory, samples were stored
under chain of custody at -80°C until processing.

For sex determination, genomic DNA was extracted from a subsample of the biopsied skin
following Rosel et al. [28] and sex was determined using a multiplex PCR reaction which
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simultaneously targets the ZFX and SRY genes [29]. Pregnancy status of females was deter-
mined from concentration of progesterone in blubber [30]. Blubber cortisol was extracted and
measured using previously developed methods used for blubber steroid isolation [31].

RNA extraction
Samples were processed in two tiers, at the end of year 1 (May 2010-Feb 2011) and at the end
of the second year (August 2011-Feb 2012). Within a tier, all samples were randomized prior
to RNA extraction. Preliminary RNA extraction trials from different integument depths did
not recover sufficient RNA from blubber at any depth. Therefore, for this study approximately
0.05–0.15 g of skin was dissected from frozen integument using a scalpel, on dry ice, just medial
to a white line demarking the fibrous layer of the dermis, and further cut into pieces� 0.2 cm
thick. The dissected sample was transferred to 1.5 ml of RNAlater ICE (Ambion) prechilled to

Fig 1. Location of biopsy samples collected from Barataria Bay (BB), Chandeleur Sound (CS), and Mississippi Sound (MS), in the northern Gulf of
Mexico.

doi:10.1371/journal.pone.0130934.g001

Skin Transcriptome of Common Bottlenose Dolphins (Tursiops truncatus)

PLOS ONE | DOI:10.1371/journal.pone.0130934 June 25, 2015 5 / 21



-80°C and incubated for at least 16 hours at -20°C to transition the tissue from -80°C to -20°C
prior to processing. The sample was then removed from the RNAlater ICE and placed in a 2.0
ml microcentrifuge tube containing 1ml Qiazol (Qiagen) and a 5 mm stainless steel bead, and
homogenized 3x using a Qiagen Tissuelyser at 20 Hz for 3 min. The sample was cooled on ice
for 30 sec between sets. The homogenate was transferred to a new 2.0ml microcentrifuge tube
and incubated on the benchtop at room temperature for 5 minutes before adding 200μl of chlo-
roform. The tube was shaken vigorously for 15 seconds then incubated on the benchtop at
room temperature for 3 minutes. After 15 min of centrifugation at 12,000 x g at 4°C, 500 μl of
the upper aqueous phase was transferred to a new 1.5 ml microcentrifuge tube containing
500 μl of 70% ethanol, mixed by pipetting, and then immediately transferred to a Qiagen
RNeasy spin column. The protocol for Purification of Total RNA using the RNeasy Lipid Tis-
sue Mini Kit with on-column DNase digestion (Qiagen RNeasy Lipid Tissue Handbook 02/
2009) was followed exactly from this point on with a 60 μl final elution in RNase-free water.
The RNA quantity was determined using a Nanodrop ND-1000 spectrophotometer and quality
was assessed using an Agilent 2100 Bioanalyzer. Only samples with an RNA integrity number
(RIN) of� 7.0 were used in the study.

Microarray
The bottlenose dolphin microarray used in this work is a custom 44K oligonucleotide array
designed using Agilent’s E-array platform (Amidad #028889) [13]. Details on the array are
available in the National Center for Biotechnology Information (NCBI) Gene Expression
Omnibus (Platform GPL17696). The array included 24,418 unigene sequences obtained from
the publicly available NCBI expressed sequence collection (dbEST), short read archive (SRA),
and nucleotide database (nr), which were quality trimmed, and assembled into contigs. These
sequences originated from cDNA libraries for dolphin peripheral blood leukocytes (PBL), liver,
kidney, spleen, muscle and skin, and individual cloned genes from lung. The sequence set was
annotated using Blast2GO [30] to obtain BLASTx homology (expect value cutoff E�10-3) gene
ontology (GO) terms, and enzyme codes to determine metabolic pathways using the Kyoto

Table 1. Samples included in microarray analysis.

Location Dates Collected Number

Barataria Bay May 10–13, 2010* 9

Aug 14–18, 2010 4

Jan 10-Feb 11 2011 3

Feb 20–25, 2012 8

Chandeleur Sound May 24–28, 2010** 2

Sept 15–18, 2010 5

Aug 20–24, 2011 11

Jan 20–27, 2012 12

Mississippi Sound May 8–17, 2010* 4

Aug 28-Sept 16, 2010 5

Feb 8, 2011 2

Aug 13–29, 2011 13

Dec 1–20, 2011 16

Total 94

*pre oil-exposure

** possible exposure; all others post-exposure

doi:10.1371/journal.pone.0130934.t001
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Encyclopedia of Genes and Genomes (KEGG) database. Sixty-nucleotide probes designed by
eArray (Agilent) were printed in a 4x44K format. Of the 24,418 sequences represented on the
microarray, 7281 were fully annotated.

RNA Labeling and Microarray Hybridization
Within each sampling tier (as defined above), RNA samples were randomized prior to labeling,
then randomized again prior to hybridization, to avoid any potential batch effects associated
with either the labeling or hybridization procedures. Total RNA (50ng) was amplified and Cy 3
labeled using Agilent’s Low Input Quick Amp Labeling Kit. The Cy3 labeled cRNA was quanti-
fied using a Nanodrop ND-1000 spectrophotometer. A total of 1.65 μg of Cy3 labeled cRNA
was hybridized to the microarray. The One-Color Microarray-Based Gene Expression Analysis
Protocol (Version 6.5, May 2010) was followed for both the labeling and the hybridization.
Hybridization was carried out at 65°C in an Agilent hybridization oven rotating at 10 rpm for
17 hours. Slides were scanned with an Agilent G2505B scanner equipped with Agilent Scan
Control software, using the Extended Dynamic Range Scan Mode, 5μM scan, XDR PMT Hi
100% Lo 10%. Images were extracted using Agilent Feature Extraction version 10.7.3.1.

Data Analysis
Microarray scan quality was assessed using Agilent’s Feature Extraction software. QC reports
and text (.txt) files obtained from Agilent Feature Extraction (FE) were imported into Agilent’s
GeneSpring 11.5.1 software and processed as Agilent single color arrays. Normalized signal val-
ues were generated by setting the threshold for the raw signals to 1.0, log transformation, and
75th percentile shift normalization. Between-array consistency was then assessed using Gene-
Spring’s quality control pipeline. Principal components analysis was performed in Genespring
using default parameters. Differential expression between selected conditions was determined
by volcano analysis using a moderated T-test with Benjamini-Hochberg multiple test corrected
p-value of 0.01. A minimum fold-change for inclusion in the T-tests was�1.5. This fold-
change on Agilent platform arrays has previously been found to yield good correlation with
qPCR analysis [33]. Unsupervised hierarchical clustering was carried out in Genespring using
Euclidean distance metric and Wards linkage rule. Gene ontology enrichment analyses were
carried out in Blast2GO [32] using Fishers Exact Test with a false discovery rate (FDR) of 0.05.
GO ontologies were then reduced to the most specific terms.

Results and Discussion

RNAQuality Obtained from Remote Biopsy Collections
Of 239 remote biopsy samples collected, 101 (42%) yielded sufficiently high quality skin RNA
to use in the microarray analysis, using a minimum acceptable RNA integrity value of�7.0.
Sampling season (i.e., ambient temperature) did not appear to contribute significantly to the
variability in sample quality. Rather, inconsistency in RNA quality likely reflects the variability
in the time samples remained exposed to ambient air and water during retrieval of the sam-
pling tip, as well as time taken to process the samples once on board the vessel. Based on the
results of this study, for subsequent studies we have implemented a field protocol wherein
retrieved biopsies are subsampled for gene expression analysis on an ice-cooled cutting board
and placed immediately in RNAlater. We found that this collection method results in 100% of
samples yielding high quality RNA. Nonetheless, for the current study sufficient samples with
high quality RNA were available to conduct gene expression analysis.

Skin Transcriptome of Common Bottlenose Dolphins (Tursiops truncatus)
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After removing suspected coastal stock animals (those collected where the Chandeleur
Sound and coastal stocks may co-mingle), 94 high quality RNA samples were labeled and
hybridized to a custom bottlenose dolphin oligonucleotide microarray. Samples were processed
in two tiers, year one and year two following the oil spill. Within a tier, samples were random-
ized at the point of RNA extraction, labeling, and hybridization to minimize batch effects that
can affect microarray analyses. Quality control analyses within Genespring did not indicate
any bias due to the two tiers of sample processing. All data have been deposited in the Gene
Expression Omnibus (GEO) as accession #GSE58471.

Of 24,418 probes on the microarray, 22,067 probes were detected in skin RNA samples in at
least 10 percent of the samples. Given that the microarray probes were designed from cDNA
libraries to multiple bottlenose dolphin tissues (see Methods), this degree of hybridization by
skin RNA suggests that the array contains many functions expressed by multiple cell types.
How many array probes are skin-specific is unknown.

Genes in Dolphin Skin Differentially Expressed According to Sex
In order to ensure that sex-specific gene expression did not confound the analysis of dolphin
skin samples, we first compared male and female gene expression patterns. Thirty-eight
females and 56 males were included in the study, distributed among all three sampling sites
and during all seasons (Fig 1 and S1 Table). Of the 22,067 probes detected in skin, 44 (0.20%)
were detected only in females, and 41 (0.19%) were expressed only in males. In addition,
among the probes detected in both males and females, 4 were differentially expressed by sex at
greater than 2-fold in normalized log intensity values (moderated T-test p�0.05). Among the
annotated sex-specific genes were several that, in humans, are located on the X chromosome
(S2 Table). In all further analyses we used a set of 21,978 probes consisting of only probes pres-
ent in both males and females, minus 4 probes that were more than two-fold different in
expression between the two sexes. Sex-specific gene expression patterns, previously reported in
the blood of bottlenose dolphins [12], were shown to have an impact on the ability to use tran-
scriptome profiles for classification.

We also investigated the effects of pregnancy status on skin gene expression in females,
since bottlenose dolphin reproduction tends to be seasonally synchronized, with calves in the
northern Gulf of Mexico generally born in the spring [34,35]. In the spring 2010 samples, 5 of
9 females were determined to be pregnant, as assessed by blubber progesterone levels of>40
ng/g [30], whereas only three samples, two from August and one from January, indicated preg-
nancy during all subsequent sampling periods. No significant differences in skin gene expres-
sion profiles were observed (moderated T-test, p<0.05) between pregnant and non-pregnant
females samples during the spring. Therefore, all females were included in analyses indepen-
dent of pregnancy status.

Season Is a Significant Driver of Skin Gene Expression in Dolphins
Principal components analysis on all 94 samples revealed a strong effect of season on the global
gene expression profiles (Fig 2a), where winter samples diverged from the other seasons along
the x- axis (first principal component). This principal component accounted for 32.6% of all
variation among samples. In contrast, there was no grouping of samples according to location,
even though significant genetic differentiation at neutral markers has been found in adjacent
bays in the Gulf of Mexico [36]. This finding differs from studies of blood gene expression in
dolphins, in which samples from different estuarine populations were distinguishable by
microarray [12].
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Unsupervised hierarchical cluster analysis similarly showed complete stratification of gene
expression profiles according to season, with winter samples clustering separately from spring
and summer samples (Fig 2b). Neither sex nor location showed significant clustering. To
explore the basis for this strong seasonal difference, we performed a moderated T-test to iden-
tify only those probes significantly differentially expressed between winter and other seasons.
This resulted in 5443 gene probes (24.7%) significantly different in winter (p<0.01, fold change
�1.5), relative to the other seasons (S3 Table). Gene ontology enrichment analysis (Fishers
exact test, FDR 0.05) found the following GO process terms over-represented: nuclear envelope
organization, nuclear migration along microfilament, protein localization to nucleus, fibroblast

Fig 2. A. Principal component analysis on all 94 microarrays shows complete separation of winter samples from all others, with no apparent segregation
according to location. B. Unsupervised hierarchical cluster analysis of the normalized array data similarly shows complete separation of winter samples from
the warmer seasons.

doi:10.1371/journal.pone.0130934.g002
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migration, positive regulation of endothelial cell proliferation, purine nucleobase metabolism,
retrograde axon cargo transport, and protein oligomerization. Of these, 2960 genes were more
highly expressed in spring/summer, while 2483 genes had higher expression in winter. The GO
process terms over-represented in the set more highly expressed in summer mirror those of the
whole set (S4 Table). In contrast, GO processes enriched in the gene probes more highly
expressed in winter included: regulation of glucose transport, seryl-tRNA aminoacylation, and
regulation of ketone metabolic process. Overall, the GO term enrichment analysis suggests sea-
sonal differences in cell proliferation and cell migration/maturation, which likely reflect
decreased metabolic rate and rate of regeneration of skin in winter as compared to warmer
months. Since the epidermis lies outside of the thermal protective blubber layer in dolphins, it
experiences significant changes in temperature between seasons. For example, in Sarasota Bay,
FL, where water temperatures range seasonally from 11–33°, the skin surface temperature in
bottlenose dolphins varied from 18.1 ± 0.4°C in winter to 30.8 ± 0.2°C in summer [37].
Although measurements of skin temperature are not available for the current study, the lowest
water temperature recorded during the winter sampling was 7.8°C, while the highest tempera-
ture recorded during the summer sampling was 34.2°C.

Skin Transcriptome Profiles in Spring vs Summer 2010
In addition to the substantial differences between winter and the warmer seasons, the hierar-
chical cluster also suggests some differences between spring and summer skin gene expression
profiles (left hand cluster, Fig 2b). In general, the expression levels observed in spring are inter-
mediate between those of summer and winter. In order to remove the overarching effect of
winter on the analysis, we compared expression profiles only in samples collected in May
(Spring, presumed pre-oil) and August-September 2010 (Summer, presumed oil exposed). Bar-
ataria Bay and Mississippi Sound were sampled in early-mid May prior to oil reaching the
coast. Chandeleur Sound, however, was not sampled until May 24–28, by which date the dol-
phins sampled may have been exposed to oil, based on oiling maps compiled by synthetic aper-
ture radar mapping [38], although no overt oiling was apparent on or in the vicinity of the
dolphins at the time of sample collection. Additional dolphins were sampled from the same
three sites in August-September, three to four months following the initial oiling in these loca-
tions. Three hundred ninety-one probes (1.8%) were differentially expressed between the
spring and summer samples (moderated T-test, p<0.01, 1.5 Fold-change; S5 Table). GO pro-
cess terms “somatic muscle development” and “regulation of actin filament” were enriched
among this probe set. When those more highly expressed in spring (204) are considered sepa-
rately, the GO process terms “muscle filament sliding” and “muscle organ development” were
enriched, in addition to the GOs identified in the whole set. No significant GO enrichment was
found among probes more highly expressed in summer (187). Interestingly, the two potentially
oil-exposed females sampled from Chandeleur Sound on May 27 and 28 clustered with the
summer animals (Fig 3, boxed). This suggests that some of the differences in their expression
profiles could reflect oil exposure and not solely seasonality; however, the small sample size
(n = 2) from Chandeleur Sound in May precludes any conclusive interpretation.

Transcriptome Expression in Summer 2010 vs Summer 2011
Using the same significance criteria above (moderated T-test, p<0.01; 1.5-fold change), gene
expression between summers was found to be quite stable, with only 52 gene probes (0.2%) dif-
fering in expression between pooled samples from all locations during summer 2010 and sum-
mer 2011 (S6 Table). Among these, only 16 were annotated (Expect values<1e-07) and no
significant enrichment of GO processes was observed.
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Fig 3. Two-dimensional hierarchical cluster analysis of 391 probes differentially expressed in 29
samples collected from spring and summer 2010 (pre- and post-oiling) (p<0.01, fold change�1.5).
Spring Chandeleur Sound (boxed) animals cluster with the summer expression profiles. Heat map color is
relative to the median intensity for each probe: red is increased, blue is decreased, log2 scale.

doi:10.1371/journal.pone.0130934.g003
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Seasonal Variation in Persistent Organic Contaminants
Bottlenose dolphin blubber represents the lipid-rich hypodermis, and is the primary site for
accumulation of lipophilic contaminants, accounting for>90% of the total body burden [36].
It is therefore often used to estimate contaminant exposure. Because females offload significant
amounts of contaminants to their young through lactation [39], blubber contaminant concen-
trations are often monitored in males as a means to assess cumulative exposures. However, in
all animals blubber undergoes seasonal changes in composition through the accumulation and
mobilization of lipid stores from adipocytes. A decrease in lipid content of the blubber, due to
temperature, starvation, or disease, is accompanied by a selective redistribution of a portion of
these stored contaminants to the blood and other tissues [40, 41]. A recent survey of POPs
(PCBs, chlordanes, dieldrin, Mirex, DDTs, BDEs, HCB, endosulfan) conducted on 175 male
dolphin biopsies from the northern Gulf of Mexico [39] included all but two of the male ani-
mals in the current study. Among these animals, the ∑POPs in the blubber was significantly
higher in spring/summer than in winter (S1 Table): 77.6 ± 37.5 μg/g lipid in spring/summer
versus 37.3 ± 23.0 μg/g lipid in winter (t-test; p<0.0001), with all POPs classes following similar
trends. Concurrently, the blubber lipid content was 20% lower in spring/summer than in win-
ter: 29.7 ± 6.44% in spring/summer versus 36.88 ± 8.88% of the total blubber mass in winter
[39]. These observations led us to investigate how much of the seasonal changes in epidermal
gene expression might be attributed to changes in the contaminant burden in the deep dermal
layers. PCA was used to explore these relationships in 56 male dolphins. As observed above for
the entire dataset, a complete separation of gene expression profiles from winter animals and
spring/summer males was found, with the first principal component accounting for 33.3% of
all variance in the data (Fig 4a). ∑POPs in the blubber (μg/g lipid) had a significant correlation
(r = 0.54; p<0.0001) with the first principal component (Fig 4b), which was mirrored by a neg-
ative correlation between %lipid and the first principal component (r = -0.57; p<0.0001) (Fig
4c). When reported as μg/g wet weight blubber, the relationship does not change (r = 0.54,
p<0.0001). However, correlation does not infer a causative relationship between ∑POPs and
global gene expression. When males from within a season were analyzed separately by PCA,
22.7% (winter) or 20.7% (summer) of the variance was explained by the first principal compo-
nents; however, there was no significant correlation between PC1 (or PC2 or PC3) and ∑POPs
in the blubber in either season (Fig 5). The absence of a correlation between global gene expres-
sion in the epidermis and ∑POPs in the blubber may reflect the fact that the stored POPs found
in blubber, and mobilized seasonally to other tissues, consist largely of refractory metabolites
that have already been processed through the phase I and phase II detoxification pathways;
therefore, when mobilized these compounds do not present substrates that would elicit the
induction of canonical detoxification pathways. It is also possible that the epidermis is not
exposed to sufficient amounts of circulating contaminants in the blood to induce a transcrip-
tomic response, or that the xenobiotic pathways in dolphin epidermis are not highly inducible
by systemic sources.

Response of Xenobiotic Pathway Components on the Microarray
Given the absence of a correlation between blubber contaminant levels and global gene expres-
sion in skin, we next queried specifically the expression profiles of genes involved in xenobiotic
pathways, which might be responding to new chemical exposure, particularly oil associated
compounds such as polycyclic aromatic hydrocarbons, known to induce the aryl hydrocarbon
receptor and p540 mediated detoxification. There is currently little information on the expres-
sion of xenobiotic pathways in the dolphin epidermis. Cyp1A1 protein, the most widely studied
biomarker of exposure to organic contaminants in cetaceans, was found to be expressed
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Fig 4. A. Principal component analysis of 56 males shows complete separation between winter samples
(circles) and those from spring (squares) or summer (triangles). B. A significant positive correlation
(Spearman rank) exists between PC1 sample scores and ∑POPs in blubber. C. An equivalent negative
correlation exists between blubber % lipid and PC1. D. ∑POPs reported on a blubber wet weight basis has
the same correlation as lipid normalized ∑POPs.

doi:10.1371/journal.pone.0130934.g004

Skin Transcriptome of Common Bottlenose Dolphins (Tursiops truncatus)

PLOS ONE | DOI:10.1371/journal.pone.0130934 June 25, 2015 13 / 21



primarily in the endothelial cells of the arterioles and capillaries of the middle and deep blubber
layers, as assessed by immunohistochemistry, but was not detected using this method in epi-
dermal basale, spinosum, or corneum layers (lipokeratinocytes) or melanocytes of the epidermis
[8]. However, Cyp1A1 transcripts are expressed in the epidermis as measured by qPCR (J. Ste-
geman, pers. comm.). In killer whales, both skin and blubber express mRNA for a number of
nuclear receptors known to activate Cyps and other xenobiotic pathway genes, including the
aryl hydrocarbon receptor (AhR), thyroid receptor (TR), retinoid x receptor (RxR), and gluco-
corticoid receptor (GR) [11]. Similarly, striped dolphins (Stenella coeruleoalba) express
mRNAs encoding AhR, Cyp1A, Cyp2B, and ER in skin biopsies [42].

Better studied, human epidermis expresses an abundance of different phase I and phase II
detoxification enzymes, including Cyps, glutathione transferases, sulfotransferases, and epox-
ide hydrolases [43,44,45]. Although a large variety of CYPs are found in human epidermis, a
recent proteomic profiling study found their expression levels to be about 300-fold lower than
found in liver, the main organ for detoxification of xenobiotics [46]. However, the presence
and expression levels of Cyps in skin appear to be species dependent; for example, rodent skin
expresses significantly higher levels than human skin. The dolphin microarray used in the

Fig 5. Principal components analyses onmales fromwithin a season: winter (A), summer (C).Within a season, there is no significant correlation
(Spearman rank) between ∑POPs in blubber (μg/g lipid) and the PC1 scores, which are responsible for 22.7% (winter, B) and 20.6% (summer, D) of the total
variance in the gene expression profiles. Symbols: red—Barataria Bay, blue—Chandeleur Sound, brown—Mississippi Sound.

doi:10.1371/journal.pone.0130934.g005
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current study contains 12 probes representing 8 Cyp family members, but does not have probes
for the AhR or for AhR-dependent genes Cyp1A, Cyp1B or Cyp2B classically induced by POPs
and oil-associated hydrocarbons. Cyp2E1, inducible by alcohol and benzene, is represented on
the array by two probes and is reported in human skin [45], but was non-detectable on the
array in dolphin skin. The Cyp3A family is represented by 5 probes with top blast hits to
Cyp3A29 and Cyp3A89. Cyp3A29 is a homolog of human Cyp3A4, which is activated by PXR,
a mediator of xenobiotic responses, and IFNα known to induce antiviral mechanisms and
immune responses [47]. Cyp3A89 was described from the horse genome sequence; its activity
remains to be fully characterized. Three Cyp4 family members present on the array, Cyp4F4,
Cyp4F6, and Cyp4V2, were expressed in dolphin skin. Like other Cyp4 family members these
genes are likely to be involved in the homeostasis of fatty acids and fatty acid derived inflam-
matory mediators [48]. Cyp26A1, involved in retinoic acid metabolism and present on the
array, was non-detectable in the dolphin skin samples.

We queried the relative expression of genes that mapped to KEGG pathway “Metabolism of
xenobiotics by cytochrome p450”, which included the Cyp3 family and one Cyp4 family mem-
ber discussed above. There was a seasonal trend in the expression of many genes in this path-
way (Fig 6), with similar patterns in both males and females. Generally the Cyp3A gene probes
showed increased expression in winter relative to summer, whereas Cyp4F6-like did not show
seasonal variation. Because there is considerable crosstalk between the xenobiotic pathway and
metabolic pathways for glucocorticoids, steroids, and cytokines, interpretation of the xenobi-
otic pathway response, relative to seasonal changes in stored POPs or to the oiling event, is not
straightforward.

The most robust seasonal changes in this pathway were seen in the expression of aldo keto
reductase family 1 member C1 (AKR1C1), which showed strong down regulation in summer,
when the POPs in the blubber are most concentrated and their distribution in blood and other
tissues is expected to be highest. AKR1C1(also known as dihydrodiol dehydrogenase 1) is part
of an AKR superfamily that catalyzes the reduction of aldehyde and ketone groups of various
substrates to their corresponding alcohols. AKR1C1 mRNA is inducible by PAHs via an ROS-
dependent pathway, rather than the AhR pathway [49]; however, its downregulation in the
months following oil exposure is not consistent with PAH responsive activity. AKR1C1 also
acts to convert progesterone to its inactive form, 20-alpha-hydroxy progesterone; thus its
downregulation in summer might be anticipated to result in increased progesterone levels.
However, blubber progesterone levels in males did not differ significantly between winter and
summer (winter 0.47 ± 0.37 ng/g; summer 0.42 ± 0.29 ng/g) nor did males differ greatly from
non-pregnant females during summer (0.39 ± 0.15 ng/g; winter levels were variable and
higher). The role of AKR1C1 in skin is not well studied. In human keratinocytes, inhibition of
AKR1C1 expression is caused by UV light exposure in an ROS-dependent manner and inhibi-
tion of its expression by siRNA leads to significant reduction in cell viability [50]. To our
knowledge the seasonal expression variation of AKR1C1 has not been explored in any species.

A similar decrease in expression during the summer is seen in corticosteroid 11-β-dehydro-
genase isozyme 1 (HSD11B1), which primarily converts cortisone to active cortisol. Human
epidermal keratinocytes synthesize cortisol and regulate its synthesis and activity in response
to wounding [51]. Cortisol has growth-inhibiting and/or pro-apoptotic effects; thus a decrease
in epidermal HSD11B1expression during summer may be a protective mechanism against the
negative effects of cortisol on cell proliferation during a season when epithelial regeneration
may be especially important. The decreased expression of HSD11B1in summer does not corre-
spond with seasonal blubber cortisol levels, which are unchanged in males (0.83± 0.63ng/g
winter; 0.80± 0.54 ng/g summer) or non-pregnant females (0.45 ± 0.28 ng/g winter; 0.45 ± 0.39
ng/g summer). Rather, it likely reflects local regulation within the epidermis. In addition to its
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role in glucocorticoid metabolism, corticosteroid 11-β-dehydrogenase acts as a phase I detoxifi-
cation enzyme that can reduce carbonyl groups on a variety of xenobiotics [52], and thus it
remains a candidate for xenobiotic activity in the epidermis.

Several members of the glutathione transferase family are represented on the array, includ-
ing cytosolic GSTα1, GSTα4, GSTκ, GSTμ, GSTω, and GSTπ and microsomal GSTs 1 and 3.
Glutathione transferases (GSTs) are phase II enzymes that conjugate xenobiotics and products
of oxidative stress to glutathione, thereby increasing their polarity and availability for excretion.
The expression patterns varied among different GST family members. Most marked was the
strong upregulation of cytosolic GSTα1 in winter. GSTα1 expression is regulated by the AhR,
and its substrates include polycyclic aromatic hydrocarbons. In humans exposed to dioxins,
both AhR and GSTα1are upregulated in the skin [53]. However, in addition to its role in

Fig 6. Hierarchical cluster of probesmapping to the KEGG pathway “Metabolism of xenobiotics by cytochrome p450”. Heat map color is relative to
the median intensity for each probe: red is increased, blue is decreased, log2 scale.

doi:10.1371/journal.pone.0130934.g006
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xenobiotic metabolism, GSTα1 also has glutathione peroxidase activity and is responsive to
endogenous products of oxidative stress. Microsomal GST3 had the opposite pattern, with
strongly decreased expression in winter. The other GSTs showed no strong seasonal changes.
UDP-glucuronosyl transferases, another family of phase II enzymes that conjugate substrates
to glucuronic acid, showed somewhat lower expression in winter than in summer samples.

Summary
This study was undertaken to explore the utility of the bottlenose dolphin skin transcriptome
in monitoring exposure and health impacts of environmental perturbations such as chemical
spills. We found that season has a profound effect on gene expression, with nearly one-third of
all genes on the array differing significantly in expression levels between winter and the warmer
seasons. Gene ontology categories over-represented in the differentially expressed gene set are
consistent with known seasonal changes in the physiology of dolphin skin. Although concen-
trations of POPs stored in blubber increased more than 2-fold in spring/summer due to the
seasonal mobilization of lipid from the blubber, the observed gene expression patterns did not
appear to be driven by POPs concentrations. It is currently unknown if this is because the epi-
dermis is unresponsive to changes in the blubber, or if the POP metabolites mobilized concur-
rent with the loss of blubber lipid are not suitable substrates for the phase I and phase II
pathways. The microarray used in the current study lacked probes to several key genes induced
by and responsible for the detoxification of POPs or oil-associated hydrocarbons (e.g., AhR,
Cyp1A1). The examination of xenobiotic pathway responses in this study was thus limited by
incomplete pathway representation on the microarray, and complicated by crosstalk between
steroid metabolism and xenobiotic pathways. Direct RNA sequencing (RNAseq) analyses, cur-
rently in progress, will retrieve critical xenobiotic pathway components known to be expressed
in dolphin skin, as well as provide a deeper context for the seasonally driven physiological
changes observed in the current study. Controlled exposure studies in skin biopsy samples or
dolphin skin cells will help sort out xenobiotic induction of skin gene expression from that
resulting from normal physiological changes. This study found no difference in global skin
gene expression between adjacent bays; however, investigations need to be conducted to com-
pare more distant regions before a clear picture of variation by location can be made. This
study identifies the need for baseline monitoring of cetaceans to further characterize the natu-
ral variability in skin gene expression in order to establish the value of skin transcriptomics as a
tool for investigating exposures and the effects of stressors in free ranging animals.
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